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Abstract. A numerical method for the calculation of the electrical conductivity of porous ceramics for gas

sensing applications is developed, which takes into account detailed microstructural features by mapping a

mesoscopic irregular resistor network onto the microstructure. The overall conductance of the ceramic sample is

obtained by solving the Kirchhoff equations for the irregular network using an ef®cient iterative algorithm. The

method is designed to handle the widely varying conductivities of different microstructural components present in

ceramic gas sensors. The evolution of the macroscopic conductance of the model systems during a phase ®eld

simulation of sintering is obtained and several characteristic stages are distinguished. The potential applications of

the method in computer aided microstructural optimization for ceramic gas sensors is discussed.
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1. Introduction

The transport properties of electroceramics depend

critically on their microstructure which is character-

ized by the geometrical shapes, spatial arrangement

and relative amount of microstructural components

such as grains, pores, second phase particles and

various interfacial boundaries. In many cases the

design and manufacture of electroceramics for a

particular application depends, to a large extent, on

one's ability to tailor the microstructure through

different processing techniques to achieve the desired

properties. It is therefore essential to develop a

quantitative way of characterizing the microstructure

- property relationships in these materials.

The microstructures encountered in electrocera-

mics such as oxide-based gas sensors are usually very

complicated. Figure 1 shows a typical example of the

microstructure observed in a TiO2-based CO sensor.

Since the electrical transport is very sensitive to the

detailed microstructural features, simplifying assump-

tions for the geometry of the microstructure may

result in signi®cant deviations of the calculation

results from the actual values. For example, it has

been shown that for the same microstructure, different

effective medium models yield different estimates for

the electrical conductance of the sample [2].

Therefore, reliable models capable of handling

realistic microstructural features are essential for

establishing a quantitative relationship between the

microstructure and the electrical properties in electro-

ceramics.

Over the past century, various analytical and

numerical models have been developed to charac-

terize the electrical conductivity of inhomogeneous

media (see, e.g., [2] or [3] for recent reviews).

However, the effect of pores, which are essential

microstructural components of electroceramics used

as gas sensors, has not been systematically investi-

gated because of their complicated morphologies. In

most of the literature, pores are either not considered

or assumed to have very simple geometry and spatial

distributions.

With the rapid advances in both processing speed

and memory capacity of digital computers, numerical

methods are now increasingly used in calculating the



electrical properties of complex microstructures.

These methods allow tackling a broad range of

problems such as electrical conduction in polycrystal-

line materials [4], percolation in random mixtures of

two components in which the conductivity of one

component is much higher than that of the other [5,6],

systems with exponentially distributed resistances [7]

and systems with periodic microgeometry [8,9].

These methods have offered important insight into

the microstructure-electrical property relationship for

heterogeneous materials [2,4,8,9].

In this paper we study the microstructureÐ

electrical conductivity relationship in porous ceramic

®lms which have three microstructural components

(grain, grain boundary and pore) with very different

conductivities. Typical thin ®lm microstructures are

simulated using the particle ¯ow model [10] for the

initial green compact and the continuum phase ®eld

model [11,12] for microstructural evolution. Since no

geometrical constraints on the microstructures are

imposed in this approach, ®nding the conductance of

the porous ceramic ®lm involves solving a three-value

arbitrary resistor network problem which has not

been discussed much in the literature. For example,

only random three-component mixtures have been

considered so far by the transfer-matrix method [2]

and by the Monte-Carlo real space renormalization

group method [13]. The microstructure of interest

here (see, e.g., Fig. 1) is clearly not random and an

accurate characterization of its electrical conductivity

is essential in the design of ceramic gas sensors. In

section 2 we describe the method in comparison with

the standard relaxation-iteration algorithm [5]. In

section 3 we apply this method to study the effect of

various microstructural features of porous ceramic

®lms on the conductivity of the material. An

application illustrating the possibility of computa-

tional design of advanced microstructures for ceramic

gas sensors is also described. Finally, our conclusions

are presented in section 4.

2. Method

Description

For a given microstructure (obtained either from

TEM/SEM measurements or from computer simula-

tions) if the length scale of the conductive regions is

large compared to the electronic mean free path, a

local conductivity s�r� can be de®ned by the bulk

value of conductivity of the material at point r. Given

s�r�, one problem is to ®nd the overall conductance G
or, alternatively, the effective conductivity s. A

commonly used approach (e.g., [5,9]) for ®nding the

effective conductivity of inhomogeneous media with

a scalar local conductivity s�r� is to solve numerically

the electrostatic equations H � j � 0 and H6E � 0,

where the electric ®eld E and the current density j
obey the ohmic relation j�r� � s�r�E�r�.

It has long been recognized (see, e.g., [5]) that the

®nite difference solution to these equations is

Fig. 1. Typical TEM image of a porous thin ®lm microstructure

used in a TiO2-based CO sensor ([1], courtesy of P. Gouma and

M. Mills).
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formally equivalent to solving the Kirchoff's equa-

tions on a cubic (or square in two dimensions) resistor

network superimposed onto the microstructure; the

lattice constant has to be small enough to resolve the

microstructural details. The conductance of the bond

joining the nearest neighbor sites i and j of this

network, gij, is proportional to the conductivity s�r� at

the point r between i and j [5].

The boundary condition for the problem is

speci®ed by applying an external potential difference

DV � VA ÿ VB to the ends of the network (Fig. 2).

The current conservation condition for all bulk sites i
reads: X

j

gij�Vi ÿ Vj� � 0 �1�

where Vi is the electrical potential at site i and the

summation is taken over all nearest neighbors of site i.
There are various approaches for solving Eq. (1)

such as the direct diagonalization method, the transfer

matrix method [2,14], or the relaxation-iteration

method [5]. In the present study we choose the

relaxation-iteration method because the calculation

time scales linearly with the system volume (o�N�
algorithm). We ®rst summarize how this method is

used to solve a network with two values of the bond

conductance (1 and a, with a51) [5], and then discuss

its application to a microstructure with pores, grains

and grain boundaries.

When a*0:5 one can start with a guess for the

potentials V
�0�
i and obtain the solution of Eq. (1)

through direct iteration:

V
�n�1�
i �

P
j gijV

�n�
jP

j gij

�2�

where the superscript denotes the iteration index.

However, when the ratio between the two values of

the bond conductances is very small �a551� direct

iteration does not converge. In this case the solution

to Eq. (1) may be obtained as the limit of a relaxation

process. As the ®rst step of this process one solves

Eq. (2) for the network with the bond conductance

ratio equal to 1/2 (typically). The solution is used as

the initial guess in the next step in which the same

network is solved with a � 1=4. The process is

continued until the desired value of a is reached.

This iterative procedure has been successfully used

to study percolation as a critical phenomenon

associated with resistor networks [5,6] and to test

the validity of brick-layer models for conductivity

calculations [4]. Two-phase composites consisting of

regularly shaped and periodically distributed inclu-

sions were recently studied; the dc conductivity,

dielectric constant, and magnetoresistance were

calculated using the iterative approach [9]. Irregular

networks were studied in recent calculations [15] of

electrical conductivity of two-phase composites

consisting of ¯uid-saturated conducting pores and

nonconducting circular particles.

The relaxation method has not been applied to

microstructures with three components like that in

Fig. 1, which would require two separate relaxation

procedures. However, because the pore conductivity

vanishes in our microstructure, the sites within the

pores may be removed, reducing the problem to one

with only two conductances. Although the network

now contains under-coordinated sites (Fig. 3), the

iteration procedure of Eq. (2) remains valid for this

irregular network [5].

Implementation and Tests

The microstructures used in this study are obtained

from the phase ®eld simulation [11,12] (see [12]

for a recent review of the phase ®eld model).

Microstructural development during sintering of a

single phase material in the phase ®eld model is

described by the temporal evolution of a set of ®eld

Fig. 2. Schematic drawing showing network discretization of a

microstructure with equipotential boundary conditions on the left

and right sides. The actual lattice constant of the resistor network

used in calculations is much smaller than that shown here.
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variables including the relative density ®eld r�r�,
which characterizes the density inhomogeneity of the

system, and the long-range order (lro) parameter ®elds

Zp�r�� p � 1; 2 . . . ; n� which characterize different

crystallographic orientations of the grains [16]. The

time evolution of the density ®eld during the sintering

process is governed by the general non-linear

diffusion equation:

qr�r; t�
qt

� H � MH
dF

dr�r; t�
� �

�3�

while the time evolution of the lro parameters are

described by the time-dependent Ginzburg-Landau

equation:

qZp�r; t�
qt

� ÿ L
dF

dZp�r; t�
; � p � 1; 2 . . . ; n� �4�

In Eqs. (3) and (4) M and L are the kinetic coef®cients

characterizing diffusional and structural relaxations, n
is the total number of lro parameters needed to

characterize grain orientations, and F is the total free

energy which is a functional of r�r� and Zp�r�.
For a particular ceramic material the conductivity

of the grain boundary (and possibly of the grain) may

change during sintering due to impurity segregation at

the interfaces. Although such effects may be included

in our approach using the calculated or experimental

data on the dependence of grain boundary conduc-

tivity on impurity concentration at grain boundaries,

in the following we consider for simplicity the

component conductivities to be ®xed parameters

throughout the sintering process. Since the grain

boundary region in general is a region of increased

scattering or activated barrier conduction, we model

the local conductivity distribution s�r� as follows:

s�r� �
sg for r inside grain

sgb � asg for r inside grain boundaries

0 for r inside pores

8<:
�5�

where sg is the grain conductivity, sgb is the grain

boundary conductivity and a � sgb=sg is a scaling

factor (typically 0.01 to 0.001) whose value is

determined by the relative conductivity of the grain

boundary compared to the grain for the system

considered. The bond conductance for two nearest

neighbor sites is then given by gij � ��������sisj
p

(for unit

lattice constant).

To successfully implement the relaxation algo-

rithm on the irregular network we employ neighbor

tables [16]. For every site only the nearest neighbors

with nonzero relative density are stored; similarly

only the non-zero conductances of the bonds

emerging from every individual site are stored. This

Fig. 3. (a) An example of an irregular resistor network associated

with a 2D porous microstructure. (b) Possible environments of the

sites belonging to an irregular network.
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procedure ensures that the memory requirements of

the method scale linearly with the number of sites in

the microstructure.

A simple and straightforward way to test the model

is to monitor the current conservation: the current

¯owing in through one end of the sample (A) has to be

equal to the current emerging at the other end (B) (Fig.

2). Since a highly accurate equality requires large

number of iterations, a difference of maximum 5%

between the incoming and outgoing current is

allowed. This brought the number of iterations in

the range of 10,000s, an average task for today's

workstations. The voltage applied to the ®nite sample

is set to DV � 100 so the error made in calculating the

conductance G of the ®nite sample is less than 0.5%.

Further tests also showed good convergence for the

potentials at various sites inside the sample.

3. Results and Discussion

To investigate electrical property changes during

sintering, the electrical conductivity of a ®nite

sample during a phase ®eld simulated sintering

process Fig. 4(a) is calculated. Here we consider a

two dimensional (2D) model system with thin ®lm

geometry. The initial green state of the sample is

generated by the particle ¯ow model [10], and

consists of 100 particles of circular shapes with a

2D density of 65%.

Under the assumption discussed earlier that the

ratio of the grain boundary conductivity to grain

conductivity remains constant, the macroscopic

conductivity s of the sample (with current ¯owing

from top to bottom in Fig. 4(a)) is calculated as the

microstructure evolves during sintering. The results

are shown in Fig. 4(b) for the case a � sgb=sg �
1=128. For this initial density, the evolution of

the overall conductivity s vs. sintering time shows

several distinct regions. First, there is a sharp

increase in the conductivity as sintering starts

caused by the formation of necks between particles.

Initially, the interparticle contacts in the green state

are poor and highly resistive, resulting in limited

electrical conducting paths from one end of the

sample to the other. As the sintering proceeds, necks

between contacting particles start to develop, forming

better conductive paths, leading to a sharp increase in

the conductance of the sample. The microstructural

evolution at this stage is characterized by shape

rearrangement in which pores change their shapes

from concave to convex and grains change from

convex to concave. After the neck formation, grains

start to grow and pores are gradually eliminated from

the sample. These processes reduce the fractions of

the microstructural components of high resistance

(e.g., pores and grain boundaries) in the sample,

leading to a slower conductance drop with sintering

Fig. 4. (a) Microstructural evolution simulated by the phase ®eld

method for a 2D green compact of 65% relative density. (b)

Change of the normalized electrical conductivity s=sg of the

sample during sintering. The grain boundary to grain conductivity

ratio is sgb=sg � 1=128.
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time compared to the rate of decrease in the early

stages.

Since gas sensing is dominated by surface

phenomena, it is desirable to have a high surface-to-

volume ratio in the microstructure [18,19]. However,

the above simulation results have shown that the

microstructure developed at very early stages of

sintering may not be suitable for sensor applications

even though it has a high surface-to-volume ratios.

This is because further sintering can take place when

the material is in service, particularly when used in

harsh environments. In this case both sintering and gas

adsorption are responsible for resistance changes,

which makes the measurements unreliable. For this

reason the microstructure developed at the inter-

mediate stage (see e.g. reduced time� 200 ~ 400 in

Fig. 4(b)) is preferable because it optimizes both the

sensitivity and stability of the material.

As seen in Fig. 1, the particles in a sensor ®lm may

be heavily agglomerated. In this case there are two

distinct characteristic length scales: one associated

with the microstructural features inside the agglom-

erates and the other associated with the size and

spatial arrangement of the agglomerates. Each

agglomerate contains grains, grain boundaries and

pores. The effective conductivity seff of an agglom-

erate can be calculated via the irregular network

approach discussed above. At the level of the

agglomerates, the microstructural components are

pores with spore � 0 and agglomerates with the

conductivity saggl � seff . Such a two-valued resistor

network problem is entirely tractable by the standard

relaxation-iteration method [5]. However, the irre-

gular network method is about 5 to 8 times faster than

the standard approach because in this case there is

only one component (the pores are discarded) with the

bond conductance given by seff . No relaxation is then

necessary.

To investigate possible effects of particle agglom-

eration on the conductance of the sample in

comparison with the effect of microstructural features

inside the agglomerates, we studied various samples

with different agglomerate structure. In particular, we

considered structures with good contact (Fig. 1) as

well as structures with weakly conducting necks

between agglomerates. When the volume fraction of

the agglomerate particles is reasonably highÐabout 5

to 10% higher than the percolation threshold of

50%Ðand the random agglomerates have good

mutual contact, then the in¯uence of the agglomerate

structure is essentially determined by the fraction of

conducting material inside the agglomerate. This is in

agreement with bond-percolation studies (e.g., [5]). In

this case the microstructural features inside agglom-

erates determine the overall conductivity of the

sample. However, if the agglomerates are poorly

connected, the in¯uence of the agglomerate structure

could be strong.

To predict the performance of the samples as gas

sensors, we need to characterize how their con-

ductivity changes when they are exposed to ambient

gases. This relationship may be obtained by compar-

ison with experiments or simulation results on the

grain and grain boundary conductivity change vs.

reducing gas concentration [18,19]. When the sample

is exposed to a certain gas, the conductivity of the

grain boundary drops signi®cantly (as shown, e.g., in

[20]). The bulk conductivity of the grains also

changes but to a much lesser extent [20,21]. Given

the variation of the conductivity of these micro-

structural components as functions of the gas

concentration, the sensing behavior of a given

microstructure may be determined.

The relaxation method for the irregular network

discussed above readily offers the capability to

calculate the overall conductivity of the sample as a

function the conductivity ratio between grain and

grain boundary, sgb=sg. A typical example is given in

Fig. 5, where the overall conductivity of a phase ®eld

simulated thin ®lm is plotted as an function of sgb=sg.

The results are in good qualitative agreement with the

observed experimental trends for ceramic thin ®lms

[20].

4. Conclusion

To provide a way of directly correlating the detailed

microstructural features developing during processing

of ceramic gas sensors to their electrical conducting

behavior, an irregular resistor network method has

been developed which is able to characterize complex

microstructures with very different component con-

ductivities. The two dimensional simulation results

have shown that combination of this method with

microstructural modeling can provide a convenient

tool for computer aided microstructural optimization

of ceramic gas sensors. Systematic study of the effect

of agglomeration, porosity, particle sizes, size

distributions, and spatial arrangements on the sensing
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behavior of ceramic gas sensors will be presented in a

separate paper to follow.
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